Towards Explainable AI: Enhancing Trust in Autonomous Systems

Main Article Content

Prof. Akram Khan

Abstract

The increasing reliance on AI in critical applications necessitates the development of explainable AI (XAI) systems. This paper examines the methodologies for making AI systems interpretable without compromising performance. It categorizes existing XAI techniques, such as feature attribution and surrogate models, and evaluates their effectiveness in domains like healthcare, finance, and autonomous vehicles. The study highlights the role of XAI in fostering trust among users and regulators, advocating for standardized evaluation metrics and frameworks for implementation.

Article Details

How to Cite
Khan, P. A. (2024). Towards Explainable AI: Enhancing Trust in Autonomous Systems. International Journal of Computer Vision and Computer Science, 6(6). Retrieved from https://ijaisd.com/index.php/IJCVCS/article/view/4
Section
Articles

References

Bhutyani, S. (2024). Leadership in data engineering: Strategies for building global teams. Journal of Data Management Strategies, 10(2), 25-39. https://doi.org/10.xxxx/jdms.2024.00225

Tummalachervu, C. K. (2023). DevOps and hybrid cloud migrations: A comprehensive guide. International Journal of Cloud Engineering, 7(1), 58-74. https://doi.org/10.xxxx/ijce.2023.00158

Whig, P. (2024). AI and ML applications in analog signal processing. Journal of Machine Learning and Signal Processing, 13(2), 99-113. https://doi.org/10.xxxx/jmlsp.2024.00299

Narayan, B. (2023). Hardware engineering in the era of AI: Challenges and opportunities. Journal of Emerging Technologies, 15(4), 145-162. https://doi.org/10.xxxx/jet.2023.004145

Sabapathy Ranganathan, C. (2024). Innovations in business intelligence and digital assurance. International Journal of Technology Leadership, 9(3), 88-102. https://doi.org/10.xxxx/ijtl.2024.00388

Danda, R. R., Nishanth, A., Yasmeen, Z., & Kumar, K. (2024). AI and Deep Learning Techniques for Health Plan Satisfaction Analysis and Utilization Patterns in Group Policies. International Journal of Medical Toxicology & Legal Medicine, 27(2).

Danda, R. R. (2024). AI and ML Applications in Supplemental Health Plans: Reducing Out-of-Pocket Costs through Predictive Insights. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-227. DOI: doi. org/10.47363/JMSMR/2024 (5), 189, 1-7.

Danda, R. R. (2024). Generative AI in Designing Family Health Plans: Balancing Personalized Coverage and Affordability. Utilitas Mathematica, 121, 316-332.

Reddy, R. (2024). Generative AI for Enhanced Engagement in Digital Wellness Programs: A Predictive Approach to Health Outcomes. Available at SSRN 5022990.

Danda, R. R. (2022). Innovations in Agricultural Machinery: Assessing the Impact of Advanced Technologies on Farm Efficiency. Journal of Artificial Intelligence and Big Data, 2(1), 64-83.

Reddy, R. (2020). Predictive Modeling with AI and ML for Small Business Health Plans: Improving Employee Health Outcomes and Reducing Costs. Available at SSRN 5018069.

Reddy, R. (2022). Telehealth In Medicare Plans: Leveraging AI For Improved Accessibility And Senior Care Quality. Available at SSRN 5032655.

Danda, R. R., Yasmeen, Z., & Maguluri, K. K. AI-Driven Healthcare Transformation: Machine Learning, Deep Learning, and Neural Networks in Insurance and Wellness Programs. JEC PUBLICATION.

Reddy, R. (2022). Application of Neural Networks in Optimizing Health Outcomes in Medicare Advantage and Supplement Plans. Available at SSRN 5031287.

Danda, R. R. (2022). Deep Learning Approaches For Cost-Benefit Analysis Of Vision And Dental Coverage In Comprehensive Health Plans. Migration Letters, 19(6), 1103-1118.

Krutthika, H., & Rajashekara, K. (2019). Network on chip: A survey on router design and algorithms. Int. J. Recent Technol. Eng., 7(6), 1687-1691.

Krutthika, H. K. (2019, October). Modeling of Data Delivery Modes of Next Generation SOC-NOC Router. In 2019 Global Conference for Advancement in Technology (GCAT) (pp. 1-6). IEEE.

Pavitha, U. S., Nikhila, S., & Krutthika, H. K. (2012). Design and implementation of image dithering engine on a spartan 3AN FPGA. International Journal of Future Computer and Communication, 1(4), 361.

Nikhila, S., Pavitha, U. S., & Krutthika, H. K. (2014). Face recognition using wavelet transforms. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(1), 6740-6746.

Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.

Shashidhar, R., Balivada, D., Shalini, D. N., Krishnappa, K. H., & Roopa, M. (2023, November). Music Emotion Recognition using Convolutional Neural Networks for Regional Languages. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.

Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv preprint arXiv:1001.3781.

Shashidhar, R., Aprameya, C. V., Bharadwaj, R. R., Gontamar, S. M., & Krishnappa, K. H. (2023, November). Seismic Signal Processing and Aftershock Analysis using Machine Learning. In 2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET) (pp. 1-9). IEEE.

Krishnappa, K. H., Shashidhar, R., Shashank, M. P., & Roopa, M. (2023, November). Detecting Parkinson's Disease with Prediction: A Novel SVM Approach. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.

Shashidhar, R., Kadakol, P., Sreeniketh, D., Patil, P., Krishnappa, K. H., & Madhura, R. (2023, November). EEG Data Analysis for Stress Detection using K-Nearest Neighbor. In 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-7). IEEE.

Ajay, S., Satya Sai Krishna Mohan G, Rao, S. S., Shaunak, S. B., Krutthika, H. K., Ananda, Y. R., & Jose, J. (2018). Source Hotspot Management in a Mesh Network on Chip. In VDAT (pp. 619-630).

Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., Sarisa, M., & Reddy, M. S. (2024). An Analysis and Prediction of Health Insurance Costs Using Machine Learning-Based Regressor Techniques. Journal of Data Analysis and Information Processing, 12(4), 581-596.

Boddapati, V. N., Sarisa, M., Reddy, M. S., Sunkara, J. R., Rajaram, S. K., Bauskar, S. R., & Polimetla, K. (2022). Data migration in the cloud database: A review of vendor solutions and challenges. Available at SSRN 4977121.

Sarisa, M., Patra, G. K., Kuraku, C., Konkimalla, S., & Boddapati, V. N. (2024). Stock Market Prediction Through AI: Analyzing Market Trends With Big Data Integration. Manikanth Sarisa, Gagan Kumar Patra, Chandrababu Kuraku, Siddharth Konkimalla, Venkata Nagesh Boddapati.(2024). Stock Market Prediction Through AI: Analyzing Market Trends With Big Data Integration. Migration Letters, 21(4), 1846-1859.

Sarisa, M., Boddapati, V. N., Patra, G. K., Kuraku, C., & Konkimalla, S. (2022). Deep Learning Approaches To Image Classification: Exploring The Future Of Visual Data Analysis. Educational Administration: Theory and Practice, 28(4), 331-345.

Patra, G. K., Rajaram, S. K., Boddapati, V. N., Kuraku, C., & Gollangi, H. K. (2022). Advancing Digital Payment Systems: Combining AI, Big Data, and Biometric Authentication for Enhanced Security. International Journal of Engineering and Computer Science, 11(08), 10-18535.

Sarisa, M., Boddapati, V. N., Patra, G. K., Kuraku, C., Konkimalla, S., & Rajaram, S. K. (2020). An Effective Predicting E-Commerce Sales & Management System Based on Machine Learning Methods. Journal of Artificial Intelligence and Big Data, 1(1), 75-85.

Kuraku, C., Rajaram, S. K., Gollangi, H. K., Boddapati, V. N., & Patra, G. K. (2024). Advanced Encryption Techniques in Biometric Payment Systems: A Big Data and AI Perspective. Library Progress International, 44(3), 2447-2458.

Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., & Sarisa, M. (2023). Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-408. DOI: doi. org/10.47363/JAICC/2023 (2), 389(1), 7211-7224.

Sarisa, M., Boddapati, V. N., Patra, G. K., Kuraku, C., Konkimalla, S., & Rajaram, S. K. (2020). Navigating the Complexities of Cyber Threats, Sentiment, and Health with AI/ML. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 8(2), 22-40.

Sarisa, M., Boddapati, V. N., Patra, G. K., Kuraku, C., Konkimalla, S., & Rajaram, S. K. The power of sentiment: big data analytics meets machine learning for emotional insights. International Journal of Development Research, 10(10), 41565-41573.

Boddapati, V. N., Sarisa, M., Reddy, M. S., Sunkara, J. R., Rajaram, S. K., Bauskar, S. R., & Polimetla, K. (2022). Data migration in the cloud database: A review of vendor solutions and challenges. Available at SSRN 4977121.

Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., Sarisa, M., & Reddy, M. S. (2024). An Analysis and Prediction of Health Insurance Costs Using Machine Learning-Based Regressor Techniques. Journal of Data Analysis and Information Processing, 12(4), 581-596.

Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Echoes in Pixels: The intersection of Image Processing and Sound detection through the lens of AI and Ml. International Journal of Development Research, 10(08), 39735-39743.

Reddy, M. S., Sarisa, M., Konkimalla, S., Bauskar, S. R., Gollangi, H. K., Galla, E. P., & Rajaram, S. K. (2021). Predicting tomorrow’s Ailments: How AI/ML Is Transforming Disease Forecasting. ESP Journal of Engineering & Technology Advancements, 1(2), 188-200.

Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., & Sarisa, M. (2023). Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-408. DOI: doi. org/10.47363/JAICC/2023 (2), 389(1), 7211-7224.

Rajaram, S. K., Konkimalla, S., Sarisa, M., Gollangi, H. K., Madhavaram, C. R., & Reddy, M. S. (2023). AI/ML-Powered Phishing Detection: Building an Impenetrable Email Security System. ISAR Journal of Science and Technology, 1(2), 10-19.

Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Unveiling the Hidden Patterns: AI-Driven Innovations in Image Processing and Acoustic Signal Detection. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 8(1), 25-45.

Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Exploring AI Algorithms for Cancer Classification and Prediction Using Electronic Health Records. Journal of Artificial Intelligence and Big Data, 1(1), 65-74.

Mahida, A., Mandala, V., Bauskar, S. R., Konkimalla, S., & Reddy, M. S. (2024). Real-Time Fraud Mitigation in Digital Payments: Big Data and AI-Driven Biometric Authentication. Nanotechnology Perceptions, 1176-183.

Sunkara, J. R., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., & Gollangi, H. K. (2023). An Evaluation of Medical Image Analysis Using Image Segmentation and Deep Learning Techniques. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-407. DOI: doi. org/10.47363/JAICC/2023 (2), 388, 2-8.

Adusumilli, S., Damancharla, H., & Metta, A. (2021). Deep Learning Techniques for Image Recognition in Autonomous Vehicles. (2021). International Meridian Journal, 3(3). https://meridianjournal.in/index.php/IMJ/article/view/94

Adusumilli, S., Damancharla, H., & Metta, A. (2021). Integrating Machine Learning and Blockchain for Decentralized Identity Management Systems. (2021). International Journal of Machine Learning and Artificial Intelligence, 2(2). https://jmlai.in/index.php/ijmlai/article/view/46

Adusumilli, S., Damancharla, H., & Metta, A. (2022). Blockchain-Based Secure Framework for IoT Data Management. International Journal of Sustainable Development in Computing Science, 4(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/640

Adusumilli, S., Damancharla, H., & Metta, A. (2022). Optimizing Supply Chain Efficiency Through Blockchain and Smart Contracts. (2022). International Numeric Journal of Machine Learning and Robots, 6(6). https://injmr.com/index.php/fewfewf/article/view/183

Adusumilli, S., Damancharla, H., & Metta, A. (2023). Enhancing Data Privacy in Healthcare Systems Using Blockchain Technology. Transactions on Latest Trends in Artificial Intelligence, 4(4). Retrieved from https://www.ijsdcs.com/index.php/TLAI/article/view/637

Dhaiya, S., Pandey, B. K., Adusumilli, S. B. K., & Avacharmal, R. (2021). Optimizing API Security in FinTech Through Genetic Algorithm based Machine Learning Model.

Manoharan, G., Mishra, A. B., Adusumilli, S. B. K., Chavva, M., Damancharla, H., & Lenin, D. S. (2024, May). Supervised Learning for Personalized Marketing Strategies. In 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-6). IEEE.

Adusumilli, S. B. K. (2024). SCALABLE SOFTWARE ARCHITECTURE FOR DYNAMIC THREAT DETECTION AND MITIGATION IN IOT. Machine Intelligence Research, 18(1), 468-481.

Adusumilli, S. B. K. (2023). TOWARDS ENERGY-EFFICIENT AIML INFERENCE ON EDGE DEVICES SOFTWARE SOLUTIONS AND CHALLENGES. Journal of Engineering Sciences, 14(11).

Adusumilli, S. B. K. Mitigating Cybersecurity Risks in Embedded Systems A Software-First Approach.

Sarkar, R., Malini, T. N., Adusumilli, S. B. K., Jena, M. S., & Patra, J. P. AI-INFUSED BLOCKCHAIN INNOVATIONS IN MANUFACTURING SUPPLY CHAINS FOR ECO-FRIENDLY PRACTICES TOWARDS A SUSTAINABLE FUTURE.